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In  a horizontal convecting layer of fluid, several distinct transitions occur at 
certain distinct Rayleigh numbers R, for a given Prandtl number Pr. The regime 
diagram has been extended to include the Prandtl-number range 

2 . 5 ~  6 Pr < 0 . 8 5 ~  lo4. 

In  particular it is found that distinct changes in the slope of the heat-flux curve 
occur even for Pr = 2.5 x The flow is steady up to R = Rt = 2.4 x lo3. For 
R > R,, the period of oscillation is compared with the theoretical values of Busse. 
For Pr 6 0.71 decreases as well as increases in the slope of the heat-flux curve are 
observed. 

For R just greater than R,, the, preferred orientation of rolls in various side-wall 
geometries is investigated. For high Prandtl number, the effect of curvature of 
the roll axis, forced by curved side walls, upon the second transition at  R,, is 
investigated. It is found that curvature, as well as previously discussed effects, 
leads to a lowering of R,,. These results, along with the observed hysteresis, sup- 
port the view that there are metastable states attainable by finite amplitude 
instability. Finally the nature of the time-dependent flow at large R and high 
Prandtl number is investigated in a Hele-Shaw cell. It is shown unequivocally 
that the observed periodicity at  a fixed point is due to hot or cold plumes moving 
past the point. 

1. Introduction 
This paper describes an extension of previous studies on the transition to 

turbulent convection. In particular it includes an investigation of (i) the heat-flux 
transitions at  low Prandtl number, (ii) the preferred orientation of rolls in various 
side-wall geometries, (iii) the effect of curvature of the roll axis upon the second 
transition at R,, (for high Prandtl number) and (iv) the nature of the time 
dependence for high Prandtl number. 

The Rayleigh number R is defined in the usual manner: R = (ga/~v)ATd~,  
where g is the acceleration of gravity, a is the thermal expansion coefficient, K is 
the thermal diffusivity, v the kinematic viscosity, AT the temperature difference 
between bottom and top of the layer, and d is the layer depth. The Prandtl 
number Pr is the ratio of v to K. 
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Previous studies (Malkus 1954; Willis & Deardorff 1967a, b,  1970; Busse 1968; 
Krishnamurti 1970a, b ;  the latter will be referred to hereafter as I and 11) have 
shown that in the horizontal convecting layer a number of discrete transitions 
occur before the flow becomes fully turbulent. In the order of increasing R,ayleigh 
number R the first is the well-known transition at the critical value R, from the 
static conduction state to steady two-dimensional convection. For Prandtl 
numbers Pr 2 7 ,  the second is a transition, at R,, 2: 1224, from steady two- 
dimensional t o  steady three-dimensional flow. The third occurs a t  a Rayleigh 
number R, dependent upon Pr and is a transition to time-dependent flow. Thus 
one forms the picture that, as the Rayleigh number is increased, the system 
approaches turbulence by becoming unstable to more and more kinds of disturb- 
ances. Each of these three types of transitions was accompanied by an increase 
in the slope of the heat-flux curve and hence an increase in the effective conduc- 
tivity of the layer. Although this seemed most reasonable a t  R = Rc and Pr large, 
it was not always clear why each new instability should be associated with an 
increase in slope. Examples are now found at  low Pr for which decreases of slope 
occur. The regime diagram has been extended so that it includes 

2.5 x 6 Pr 6 0.85 x lo4. 

For Prandtl numbers approaching zero, the dimensional heat-flux curve is 
expected to show no change of slope as R increases through R,. This is intuitively 
clear, and it can also be seen from small amplitude nonlinear theories. If the 
Boussinesq equations are scaled using the depth d for the length scale, d 2 / K  for 
the time scale, K / d  for the scale of velocity ui and ATIR for the scale of fluctuating 
temperature 0, one obtains the usual equations with Pr-luj auilaxj and u>,aO/ax, 
for the nonlinear advection terms. The small amplitude expansion techniques 
are applicable where these terms are small compared with the linear terms and 
hence inapplicable as Pr -+ 0. By rescaling the equations using d for the length 
scale, d2/v  for the time scale, vld for the velocity scale, AT for the scale of the 
static temperature and ATPrIR for the scale of 0, one obtains 

v2ui + A,O - anlax, = U, au,pxi, 

v2e + R~~ hj = Pr uj aelax,, 
aujpx j  = 0, A = (o,o, I) ,  

where n is a modified pressure. The results of Schluter, Lortz & Busse (1965) can 
then be used to show that, for Pr-tO, the dimensional convective heat flux 
becomes 

Pr2 R-R, AT 
(we)  = (+ K- - ,  d 

where a is an integral computed by Schluter et al.; for rolls between rigid 
boundaries, a = 0.00832. This result is compared with the experimentally deter- 
mined heat flux for Pr = 2.5 x lop2. 

In  a horizontally infinite layer there is no preferred orientation of the rolls. 
For a laboratory experiment, where the layer is necessarily truncated by side 
walls, Davis (1967) and Segel(l969) have discussed the question of how shallow 
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the layer must be to approximate an infinite layer. They have shown that, for a 
shallow rectangular layer, rolls should line up with their axes parallel to the short 
side of the container. This orientation minimizes the ratio of the rate of viscous 
dissipation of kinetic energy to the rate of release of potential energy by the 
buoyancy force. Expressed in another way, the preferred orientation is one in 
which the rolls meet most of the side boundaries at right angles. The effect of the 
side walls penetrates approximately two roll widths inwards from the side walls. 
Although the theory is for perfectly conducting side walls which would almost 
never be used in an experiment, certain features controlled by viscous dissipation 
can still be expected to be observed. 

Segel has further discussed wall modes, such as ring-shaped rolls that fit in 
a circular container (Koschmieder 1966), for which the side walls affect the entire 
convecting layer. Similar wall-induced flows were observed (Krishnamurti 1967) 
in a square container, one subcritical roll being seen along each of the four side 
walls. As the Rayleigh number was slowly increased beyond R,, more rolls 
formed along the subcritical roll, so that a square pattern of rolls was formed, 
with those rolls parallel to one wall meeting the perpendicular ones along the 
diagonals of the square tank. It was explained that the subcritical rolls were 
produced by a fringing of the isotherms due entirely to the fact that the horizontal 
layer was truncated. This fringing implies a horizontal temperature gradient 
which will always drive a flow. Furthermore, it was found that the square array 
of rolls was unstable as expected, since the flow was three-dimensional along the 
diagonals and since this can be, and was in fact, replaced by rolls everywhere 
parallel to one boundary or everywhere perpendicular to that boundary. This 
fringing of isotherms due to truncation can be made very small if the side walls 
have very nearly the same thermal conductivity as the fluid and are either very 
thick or are surrounded by more fluid of the same conductivity. Indeed it is 
found that, with such an arrangement, the ring-shaped wall mode is not realized, 
but instead the rolls tend again to meet most of the walls at  right angles. 

When the heat flux and Rayleigh number are decreased from a value greater 
than R,,, a hysteresis both in the heat-flux curve and in the flow form is observed 
(I). The heat flux at a given R is larger than it was when R was increased from 
lower values, the roll width is larger, and the three-dimensional disturbance 
persists to Rayleigh numbers as low as 4.5RC. It was shown in I (figure 8 b )  that if 
R were changed too rapidly (RT1 dRldt = 6 x s-l, where the thermal diffusion 
time is d 2 / ~  = 3.4 x 103s) the three-dimensional disturbance could be amplified 
at R = 4R,. It should be noted, however, that a three-dimensional disturbance 
with a very distinctive wavelength is already present (visible in figure 8 (a) of I, 
and also very apparent in figure 5 (a) of Krishnamurti 1968b) because the con- 
vection was started as a ‘wall mode’, i.e. as a square array of rolls. In  most 
laboratory experiments a desired value of R is reached fairly rapidly, usually 
from below, and rolls are usually curved. If rolls are curved and already contain 
some three-dimensional regions for R below R,, because of initial or boundary 
conditions (and R is always increased from below) how will the magnitude of R,, 
be affected? It is found that R,, can be considerably reduced. 

6.7, occurs at a Rayleigh The third transition in order of increasing R, for Pr 
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number which will be labelled R,. It marks a change from a steady three-dimen- 
sional to time-dependent flow, and has associated with it a discrete change in the 
slope of the heat-flux curve. The nature of the time dependence has been discussed 
by Krishnamurti (in 11) and by Willis & Deardorff (1965, 1967a, 1970). In I1 the 
nature of the time dependence was studied by means of x, t photographs, where 
x is a horizontal co-ordinate and t is the time, synchronized with temperature 
measurements. In  steady cellular flow, the cell boundaries remain fixed in time; 
the tracer particles make herring-bone-like patterns as they move towards or 
away from cell boundaries. At higher Rayleigh numbers, x, t photographs show 
bright spots corresponding to regions of strong shear moving in the following 
manner. When the light beam is near the bottom (top) of the layer, a bright spot 
moves from the cell boundary where there is descent (ascent) of fluid across to 
the next cell boundary where there is ascent (descent). This process is repeated 
periodically with time. (See, for example, figures 4 (f) or (h) in 11.) This horizontal 
movement of the bright spot is found with the light beam near the top or bottom 
of the layer, but never with the light beam at mid-depth. At mid-depth oscillations 
of brightness with time can be seen, but no horizontal motion is detectable. 
(Compare figures 4 ( c )  and (d) in 11.) Of course, as was mentioned in 11, oscillations 
of brightness in time with no horizontal motion were found even near the bottom 
and top boundaries in cases where the light beam intersected a cell in which the 
flow was in the line of sight. In  all cases, of the several hundred x, t photographs 
studied, the bright regions were observed to move with the local cellular flow. 
This behaviour cannot be called depth independent. If the flow in a particular 
cell, say near the lower boundary, is from left to right (so that the characteristics 
on the x, t photograph have positive slope), then the bright spots move from left 
to right repeatedly, always with positive slope, and never oscillating from positive 
to negative slope. This behaviour is not consistent with oscillating rolls corre- 
sponding to a wave travelling along the roll axis as is found for low Prandtl 
numbers. For high Prandtlnumbers, as the bright spots approach a cell boundary 
periodically the latter may oscillate, but the bright spots should not be eliminated 
from consideration as has been suggested. 

Difficulties in interpretation arising from I1 might be mentioned. If the bright 
spots had been due to fall-out of aluminum flakes, there should have been a 
noticeable difference between observations made immediately after stirring or 
after several weeks of continued convection. There should have also been a 
noticeable difference between the cases of Pr = 10 or Pr = lo4, since for Pr = lo4 
the settling of aluminum flakes requires several months. There were no such 
differences observed. Of course temperature anomalies were obtained with or 
without tracers. Moving bright regions as described above are apparent in 
Rossby’s (1966) time-lapse movies, where in plan view bright flashes move 
horizontally, and in elevation periodic surges of a bright region are seen. The 
interpretation of bright regions when aluminum flakes are used as tracers 
requires care. One interpretation is that they are regions of strong shear. 
Another is that bright regions represent high concentrations of aluminum flakes, 
In  11, care was taken in its use so that the first interpretation was valid. The x, t 
photographs in I1 display only one dimension and thus an incomplete picture of 
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the flow. Another difficulty stems from the fact that the bright regions are diffuse 
or poorly defined, and can easily be interpreted as patches of high tracer concen- 
tration. It became clear that the latter problem would be overcome by choosing 
a fluid of high thermal expansion coefficient and low thermal diffusivity. Freon 
113 or Rheoscopic fluid FW 101 is just such a fluid. The thermal expansion 
coefficient of freon 113 is about 7 times that of water; the thermal diffusivity is 
about half that of water. A sealed glass tank 7 x 12 x 1-5in. deep containing a 
mixture of these two fluids was heated below and cooled above. Distinct growing 
plumes were easily observable moving with the larger scale flow. However this 
large-scale flow itself was quite disorderly. It was felt that a more orderly flow 
that would have an x, t photograph as in 11, figure 4(f), showing a simple move- 
ment of plumes would be much more instructive than a flow more disorderly than 
that in 11, figure 4(g). In  this paper, we show convection in a confined region 
(a Hele-Shaw cell) heated below, to demonstrate the fact that hot spots or plumes 
are advected by an orderly larger scale (BBnard cell) flow. 

The flow of homogeneous fluid in a Hele-Shaw cell has been discussed by many 
authors (Hele-Shaw 1898; Lamb 1932, p. 582). Cellular convectionin a Hele-Shaw 
cell has been discussed in a series of papers by Wooding and by Elder, who gives 
a complete bibliography (Elder 1967). 

In 11, the periodicity described above was found in x, t photographs at  R 2 R,. 
Of course a value of R considerably greater than R, was used to obtain a strong 
signal and a clear picture of this periodicity. In  this paper, the Hele-Shaw cell is 
used to demonstrate the nature of a time-periodic flow that develops when one 
degree of freedom is removed, Again the observations are taken a t  R much greater 
than that a t  which time-periodic flow first develops, in order to obtain a clearer 
and more interesting picture than at the marginal state. Most, of the photographs 
shown here are at a Rayleigh number around 500R,, where R, = 3.7 x lo5, 
although occasional plumes could be seen at  R as low as 50R,, for example. It 
should become clear from the photographs presented here than an x, t representa- 
tion similar to those in I1 would be obtained for the time-dependent Hele-Shaw 
flow. The Hele-Shaw flow is presented as a clearer demonstration of the type of 
time dependence found in I1 for a fully three-dimensional flow at large Pr and 
R 2 R,. 

2. Apparatus and procedure 
The apparatus and experimental procedure used for part of this study were 

essentially as described in I and 11. After a brief summary of these, modifications 
will be described. A Plexiglas tank of inside dimensions approximately 
20 x 20 x 13 in. deep contains the following layers of materials from the bottom 
upward. The first layer is a 4in. thick block of aluminum, at  temperature TI, 
with an electrical heater attached to its underside. Next is a low conductivity or 
‘dummy’ layer consisting of a &in. thick layer of fluid, a t in .  thick layer of 
Plexiglas and another &in. layer of fluid. Next is a 1 in. thick layer of aluminum, 
at temperature T,. Next is the fluidlayer, which occupies a region 49 cm by 49 cm 
and a depth d. Values for d of 0.988, 1-984, 3.007 or 5-000 em were used. Above 
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the fluid is a i in. thick layer of aluminum, a t  temperature T3. Above this is 
another dummy layer of Plexiglas, then above this a 4in. thick block of 
aluminum, at temperature T4. This block has channels cut in its upper side for 
the circulation of the cooling fluid. Details will be found in I .  Because of the high 
conductivity of aluminum compared with that of the convecting fluid, vertical 
temperature gradients in the aluminum blocks are too small to measure. Hence 
the heat transported by the convecting fluid is determined by measuring the 
vertical temperature gradient across the dummy layer. Because it has a relatively 
low conductivity, TI - T, is large enough to be easily measured. Then, knowing 
the depth dp  and the molecular conductivity kp of the dummy layer from a 
separate measurement, the heat transported upwards is determined as 

kp TI-T, T3-T4 
H = - [ -  d, 2 +T] , 

where we have taken the two dummy layers as identical and averaged the flux 
through the two. I n  a steady-state experiment this is also the heat transported 
upwards by the convecting fluid, neglecting lateral losses, which have been esti- 
mated in I to  be less than 5 yo of the vertical transport. To determine Rayleigh 
numbers, only T2 - T3 and d were measured. The tabulated values of a, K and v 
shown in table 1 were used. 

All experiments reported here were performed as externally steady, fixed heat 
flux experiments. The power input was set a t  some desired value, then the 
temperature of the cooling fluid was adjusted until all four aluminum blocks 
reached steady temperatures. This was always possible to attain even when the 
convective flow itself was time dependent. Mean temperatures were held suffi- 
ciently constant (to within & 4 "C or even & 0-1 "C depending upon the fluid) so 
that data reduction would not involve a calculation of the variation of material 
properties with temperature. In  view of the hysteresis found in I and 11, care was 
always taken to change H in one direction only. For example, H was increased 
by a few per cent at a time and an external steady state was established before 
making observations. Then H was increased again. H was never allowed to 
decrease until the desired upper value for a series of experiments was reached. 

The heat-flux transitions in air were determined in this way. Time dependence 
was determined from temperature traces from a thermocouple junction 0.5 mm 
in diameter that protruded from the upper boundary of the fluid layer l .6mm 
into the fluid. The most sensitive range of the microvolt amplifier is 0-3pV full 
scale. Thus ideally, when care is taken with shielding and prevention of stray 
e.m,f.'s, a temperature difference of 5 x "C can be detected using copper- 
constantan thermocouples. The imposed temperature difference is of the order 
of one degree. The response time of such an amplifier is slow (of the order of Is). 
However, time dependencies in the fluid were much slower; no time dependencies 
were ever encountered that approached the limit of resolution in time. 

The heat-flux transitions in mercury were obtained in a similar manner. HOW- 
ever, in this case a new tank of 1 in. thick Plexiglas with 20in. square plates of 
copper instead of aluminum was used. The difference in thermal properties is 
shown in table 1. It was found that painting the copper with rust-resistant paint 
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k 
a (cal cm-l K V d 

(cmzs-l) (cmzs-l) Pr (em) Fluid (%)-I s-l "C-1) 

Mercury 1.819 x 1-91 x 10-2 4.2 x 1.16 x 2-5 x 10-2 1.0 
Air 3.37 x 10-3 6.0 x 10-5 0.26 0.18 0.7 1 3.0, 5-0 
Water 2.13 x 1.41 x 1.43 x 1.0 x 6.7 7.6 
Freon 113 1.390 x 2.379 x 0.682 x 4.76 x 10-3t 7 7.6 
Silicone oil 0.96 x 3.8 x 1 . 1 6 ~  1.0 0.86 x 103 i.o,2.0 

Boundary 
- - - Aluminum - 0-50 0.87 

Glass - 2.5 x 10-3 5.0 x 10-3 - - - 

t This data is taken from Benning & Markwood (1939). The remainder of the table is 

- - - Copper - 0-92 1.0 

data taken from the Handbook of Chemistry and Physics, 39th edn. 

TABLE 1 

was sufficient to prevent amalgamation with mercury. The tank was built with 
four threaded, vertical, teflon rods attached to the base of the tank in each 
corner. Each plate was carefully lowered into a layer of mercury so that air 
bubbles would not be trapped, then bolted down to prevent floating with four 
teflon nuts which were precisely machined to act as spacers. The first plate was 
levelled to within 5 0.0003in. of 12in. All plates were machined to be flat to 
within 5 0.0005 in. The most convenient dummy layer was a +in. thick sheet of 
glass. A d.c. power supply produced constant ohmic heating in a 20in. squared 
fine mesh of resistance material which was electrically isolated from both the 
copper plate and fluid. Time dependence was determinedagain as described above. 

To study the preferred orientation of rolls in various geometries, silicon oil of 
Prandtl number 0.86 x lo3 was used with aluminum boundaries above and below. 
The thermal conductivity of the fluid is 3.8 x iO-4cal cm-l~-~OC-~, that of the 
Plexiglas inserts is approximately 5 x 10-4 cal cm-ls-l "C-l. The following 
Plexiglas spacers of depth d were inserted into the fluid layer: (i) a long rect- 
angular rod, d = 0-988 cm, that divided the fluid layer such that one region was 
49 cm by 18 cm; (ii) two rectangular rods, d = 0.988 em, that simultaneously 
divided the fluid layer such that one region was a long rectangle parallel to the 
line of sight and another was a long rectangle perpendicular to the line of sight; 
(iii) a circular ring of Plexiglas, d = l-OOcm, inside diameter D = 19.1 cm, out- 
side diameter 20.2 cm and aspect ratio Old = 19.1 ; (iv) a circular ring of Plexiglas, 
d = 1*00cm, inside diameter 6-3cm, outside diameter 7.6cm and Dld = 6.3; 
(v) the circular ring of (iv) inside the ring of (iii) producing an annular region of 
depth d = 1.00 cm and gap width 5.71 cm; (vi) a circular ring of Plexiglas, 
d = 2-00 cm, inside diameter 44 cm and D/d = 22. 

The 'plan forms' of convection for these various geometries were obtained by 
photographing aluminum flake tracers suspended in the fluid with a mechani- 
cally driven camera viewing the flow from the side. As a light beam scans the 
layer, the camera is moved in such a way that the light from different parts of the 
layer forms images on different parts of the film. This has been described elsewhere 

19-2 
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(Krishnamurti 1968a). With Plexiglas rings in the fluid layer, a glare results from 
reflexion of light into the camera at  the four points where the light beam strikes 
the ring at  a 45" angle. Also, the smaller ring was slightly frosted so that the glare 
is minimized, but it casts an apparent shadow since in this method of photo- 
graphy the camera must look through the ring when the illumination is behind it. 

To demonstrate the nature of the time dependence found in 11, the following 
apparatus and procedure were used. A Hele-Shaw cell was constructed using two 
sheets of 28 x 4 x t in. thick Plexiglas. The two sheets were separated by t in .  wide 
strips of &in. thick Plexiglas and sealed together in such a way that the liquid 
occupied a region approximately 27.5 x &in. and 3 in. in depth. (The remaining 
depth of 0.5 in. mas occupied by air to allow for expansion of the liquid.) We chose 
co-ordinates such that x varies from 0 t o  27.5in., y from 0 to &in., and z from 
0 t o  3in. in the vertical direction. The liquid was heated steadily in time and 
uniformly in the x direction by means of an electrical heater. This consisted of 
a 28in. long piece of resistance wire, of diameter 0.05mm and total resistance 
866 Q, encased in thin polystyrene medical tubing of &in. outside diameter. 
This tubing containing the wire was laid inside the Hele-Shaw cell along the 
bottom of the liquid layer. The power input could be varied, but for the photo- 
graphs shown, it was 1.84 W. Cooling a t  the top was accomplished in some cases 
by circulating cold water through a metal tube stretched across the top of the 
convecting fluid. However, this cooling tube has been omitted for the photo- 
graphs shown here. The convecting fluids used were silicone oil with aluminum 
flakes, water with Rheoscopic fluid AQWOlO as tracer, and freon 113 with 
Rheoscopic fluid FWOO5 as tracer. The latter produced the most striking 
photographs as explained below. Sequences of photographs were taken showing 
the attainment of a statistically steady state as well as sequences showing the 
nature of the time dependence. A 16 mm movie m7as also produced. 

3. Experimental results 
Heat-Jlux transitions for low Prandtl number 

The heat-flux data are shown in figures 1, 2 (a )  and 2 (b) ,  where the heat flux has 
been non-dimensionalized so that it is the product of the Nusselt and Rayleigh 
numbers. Although the changes in slope are smaller than with large Pr, distinct 
changes of slope are still detectable. Straight-line segments were drawn because 
the scatter in the data is reasonably small, and because there is a definite change 
in the temperature trace of the internal thermocouple trace from steady to time 
dependent at the Rayleigh number labelled R,. This is analogous to the change 
to time dependence coincident with a change in slope such as that shown in 
figure 2 of I1 (where the change of slope is larger). For mercury, hysteresis was 
found near R,. The dots, triangles and squares in figure 1 represent three different 
sequences each with R increased from below. The crosses represent one sequence 
with R decreased from above, following the increase in R as shown by the dots. 
The flow was found to be steady up to R, = 2.4 x lo3. The time-dependent flow is 
shown by encircled data points. There is an increase in slope a t  R,. There is a third 
transition a t  R = 3.4 x lo3, above which the slope decreases. For air, the flow 
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FIGURE 1. Heat flux, non-dimensionalized to equal the product of the Nusselt number N 
and Rayleigh number R, plotted against R for mercury (Prandtl number = 2.5 x 
Experimental results : , run 1, R increased ; A, run 2, R increased ; , run 3, R increased ; 
x , run 3, R decreased; encircled data points represent time-dependent flow. 

was steady up to R, = 5.6 x lo3, in complete agreement with the earlier results 
of Willis & Deardorff. There is an increase in slope at R = R,. However, for 
R T 1.1 x lo4 the heat-flux curve shows a decreased slope for increased R. The 
slope decreases again a t  around 1.7 x lo4. Some of this data is summarized in 
table 2 along with results of some previous studies. The quantity dHldR is 
interpreted as an effective conductivity of K , ~  for the convecting layer. 

The response time of the convecting air layer was found to be unusually long 
compared with the response times of other fluids. When the experimenter 
increases H by AH,  the fluid adjusts R by AR. By this procedure, it was found 
that the data point moved to a final steady ( H ,  R) point with R larger than was 
expected from studies with other fluids (i.e. leading to smaller slope), and moved 
more slowly than was expected from studies with other fluids. The thermal 
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FIGURE 2. Heat flux. N R  0s. Rayleigh number R for air (Pr = 0.71). (a) First two transi- 
tions. 0 ,  d = 3.0 cm, steady internal temperatures; A, d = 3.0 em, time-dependent 
internal temperatures ; , d = 5.0 cm, steady internal temperatures ; , d = 5.0 cm, time- 
dependent internal temperatures. ( b )  Decreases of slope at  R = 6R, and R = 10R,. The 
cluster of data points at R = 12 x lo3 shows the amount of drift that occurs in a period of 
several days. a, d = 3.0 em; 0, d = 5.0 cm. 
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Experimentally determined slopes 

dHldR for dHfdR for 
Pr R, G R G RE R,, G R G R ,  

2.5 x 1.30 __ 
0-7 1 1.37 - 
0.67 x lo1 2.72, 2.77 4.66 
1.0 x 102 3.0 4.3 
0.86 x 103 3.1 4- 1 
0.85 x 104 3.4 4.2 

dHfdR for 
R > R, 

1.6 
1-6 
4.8 
5.6 
5.6 
5.6 

Theoretically determined slopes 

Initial slope Average slope 
dHldR dHldR for 
(SLB) t R, G R G 1 . 0 ~  104 

Pr --t 0 1 + 1.20 x lo2 Pr2 - 
Pr = 2.5 x 1.08 - 
Pr = 6.7 2.43 2.99 (SV)? 
Pr + co 2-43 2.95 (B)? 

t SLB refers to Schliiter, Lortz & Busse (1965), SV refers to Schneck & Veronis (1967) 
and B refers to Busse (1968). 

TABLE 2 

diffusion time rt = d 2 / K  was 35 s and the viscous diffusion time re = d2/v  was 49 s 
for one set of experiments with air. For higher Prandtl number fluids, a steady 
state was reached at  least in a time rt after external conditions had been changed, 
but in the case of air more than ~ O T , ,  or about 30 min., was required. Thus, in the 
case of air, the heat-flux curves are quite different from the quasi-steady curves 
of Willis & Deardorff. The final state ( H ,  R) remained unchanged for at  least 
several days, to within the scatter (exaggerated by the size of the dots), shown 
by the cluster of data points around R = 1.2 x lo4 (figure 2b) .  The experiment 
was repeated several times (once at  a different depth) to obtain the entire 
heat-flux curve, and was found to be completely reproducible. 

The period of the time dependence is plotted against the Rayleigh number in 
figure 3. The period has been made dimensionless by using the viscous time scale 
d2/v .  For air, with Pr = 0.71, it makes little difference whether one uses d 2 / K  or 
d2 /v .  For mercury, however, d 2 / K  = 24 s and d2/v  = 8.6 x lo2 s for these experi- 
ments (d = lvocm). The observed periods were of order 103-102s. Thus, had the 
periods been scaled by d2 /K  as with all the other fluids in 11, these periods would 
be decades apart from the others in figure 8 of 11. The time dependence first set 
in with a period of 1-14 x 103s then increased rapidly with R. Since temperature 
traces became quite irregular even at  R just exceeding R,, spectral analyses were 
performed. The multiple peaks of the spectra were read off and plotted in figure 3. 
Using Busse’s (1972) result as stated in his equation (5.2) that the period r of 
oscillation measured in units of d2/K is related to the wavenumber b by 
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FIauRE 3. The period of oscillation, non-dimensionalized using the viscous diffusion time 
@/v, plotted against the Rayleigh number. 0,  mercury, d = 1.0 em. Air: A, d = 5.0 cm; 
A,  d = 3- rm; 0, Willis & Deardorff (1967a), d = 2-5 em. 

the observed periods at  R = R, would correspond to a wavelength of about 
200 cm. The convection tank was only 49 cm by 49 cm. It may also be noted that 
Busse’s condition for this instability (his equation (5.1)) gives 

(R- RJR, 2 1-94 x 10-4 

for mercury. Possible reasons for this discrepancy are discussed below. The data 
are summarized in the regime diagram, figure 4, where the stars indicate observed 
changes of slope. Above curve I11 the flow is time dependent. Curve I V  marks 
the next higher change of slope a t  which higher frequencies were observed. For 
mercury this change of slope is seen from figure 1 to occur at  R = (3.3 0.1) x 103 
while it is seen from figure 3 that higher frequencies appear for R 3 (3.15 & 
0.05) x 103. 
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FIGURE 4. Regime diagram. 0, steady flows; 0,  time-dependent flows; *, transition 
points with observed change in slope ; 0, Rossby's observations of time-dependent flow; 
a, Willis & Deardorff's (1967a) observations for turbulent flow: A, Silveston's point of 
transition for time-dependent flow (see text). 

Preferred orientation of rolls 

These studies can be summarized by stating that rolls prefer to meet most of the 
lateral boundaries a t  right angles. For the 49 em by 18 em region, the orientation 
of rolls with axes perpendicular to the long wall is demonstrated in figure 5 (a)  
(plate 1). At least two rolls along each of the shorter walls were found to have 
modes a t  right angles to the short wall. Some of this is visible at  the extreme left 
of figure 5 (a) .  In  each of the circular regions studied, again rolls met most of the 
ring boundaries at right angles as shown for example in figure 5 (c) .  Finally, the 
same preference is shown for the annular region between two rings in figure 5 ( b ) .  
Ring-shaped rolls were not found in any of the rings. In  a similar geometry, 
Chen & Whitehead (1968) found convection patterns similar to figure 5 ( c )  even 
though they had artificially induced straight rolls by using their light-grid 
method. This should probably not be ascribed to a fault in the cooling system 
(Segel1969), but to a preferred orientation. In  another context circular rolls were 
induced using the light-grid method within a circular boundary which lay in 
a larger square tank. It was found that the induced ring rolls could not be main- 
tained unless the entire layer were rotating. Without rotation, a mode of convec- 
tion perpendicular to the circular side wall formed, starting at  the outermost 
ring roll. 

Effect of curvature on  R,, 
With the systematic curving of the rolls, forced by the circular boundaries, 
Dld = 22 (figure 6 c ) ,  the heat flux was increased in small steps with long steady 
periods between each step. The first trace of disturbance is seen at  R = 1.3 x 104 
and is well established at  R = 1-7 x lo4 (figures 5 d, e).  Starting with straight 
rolls in a square container and increasing R from below, the same form of 
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disturbance was not well established until R = 2-2 x 104. For the smallest ring, 
Did = 6.3, the flow appeared three-dimensional from the lowest Rayleigh number 
observed ( R  2: 3 x 103). In figures 5 (c) and ( d ) ,  more strongly curved rolls near 
the wall, where they can be defined as rolls, are not appreciably wider than the 
rolls in the interior of the ring. The difference in width is not sufficient to explain 
the lower value of R,,. The point is that the disturbance grows throughout 
the layer. 

In summary, there is a definite hysteresis in both the heat flux and the flow 
pattern when R is decreased from above RII; when R,, is approached from below, 
the two-dimensional flow state appears to be metastable and probably a variety 
of disturbances including curvature of the roll axis or other local imperfections 
can lead to the growth of the cross disturbance everywhere and hence to three- 
dimensional flow for R below 2.2 x lo4. The point of establishing the presence of 
hysteresis and non-uniqueness (dependence upon the initial state or presence of 
the right fluctuations to excite an early transition) is to  show that the transition 
near R,, is a finite amplitude instability. Further the non-uniqueness points to 
the non-existence of a selection criterion. 

Nature of the time dependence at high Prandtl number 

Figure 6 (plate 2) is a sequence of photographs showing how the final state in 
Hele-Shaw convection (frame 12) is attained. After thorough stirring of the fluid, 
the heater was turned on. Frame 1, taken a few seconds later, shows many 
thermals, or plumes, which are seen to grow taller in frames 2 and 3. It must be 
stressed that bright regions do not mean a high concentration of tracer particles; 
dark regions do not mean a dearth of particles. Although such changes in con- 
centration of tracer particles can occur in general, owing to settling under 
gravity, this has not occurred in the few seconds between stirring and the photo- 
graphing of frame 1. The bright regions are those regions in which the shear has 
aligned the tracer particles such that they strongly reflect the light into the 
camera. The same region viewed from different angles will not be as bright. 
Viewed by transmitted light, very little is visible and it is clear that there is no 
noticeable concentration of particles anywhere. For these photographs two 
lamps were used, one on the left and one on the right of the camera with the light 
beam making an angle of about 45" with the line of sight. The dark line along the 
centre of each plume is a line of symmetry along which the shear awlax vanishes. 
Although gradients in the y direction are larger, these lines of symmetry are still 
visible presumably because the layer is so thin in the y direction compared with 
the optical depth. Obviously plumes cannot remain plumes, self-similar or other- 
wise, when the depth of the fluid is finite. The manner in which they finally are 
replaced by BBnard-like convection is interesting. Tall skinny plumes tilt and 
sway with height. If a gap forms between them, a new plume starts to grow from 
the heated bottom. This new plume gets swept into one or the other of the 
neighbouring old plumes. The old plume which sweeps up the new one appears to 
gain strength for it then continues to sweep up every new thermal formed in its 
vicinity and finally becomes a centre of rising motion. Many such centres form 
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as may be seen in frame 10, but even some of these are swept up by stronger 
neighbours and the final state is as in frame 11 or 12. There is in this final state 
a larger scale of motion which represents the BBnard-like cell and has a horizontal 
scale comparable with the depth of the layer. For example, in frame 11, there are 
centres of descending motion at  about 5$in., llgin. and at  19iin. There are 
centres of ascent at  around gin., 15.5in. and 20.2in. The Rayleigh number is 
approximately 2 x 108; the critical Rayleigh number is computed to be 3.7 x 105. 
When R is kept small, either by using low heating rates or a more viscous fluid, 
this large-scale motion is the only one observed. The flow is then just like that 
described by Elder (1967) in his figure 8 (9) (plate 1) .  (Elder’s Rayleigh number A 
differs from ours by a factor (S/d)2,  where S is the half-width between plates. In  
terms of A,  the critical value A, is predicted to be 4n2 and the observed one to be 
A,  = 40.) However, at higher Rayleigh numbers, there is, in addition, a smaller 
scale motion, namely, the growing plumes, which are better seen close-up (figures 
7 (a) and ( b ) ,  plates 3 and 4). In  figure 7 (a )  the arrow in frame 1 points at  a 
growing plume which we follow in successive frames. The photographs were 
taken at  3 s intervals. The plume is seen to grow larger and move to the right. In  
figure 7(a), frame 3, another plume, indicated by the smaller arrow, is seen 
forming near the bottom of the descending fluid. The pair of plumes is followed 
(continued in figure 7 ( b ) )  as they grow and move toward the centre of the rising 
motion. Similarly, one can pick any plume to the right of the centre of rising 
motion (to the right of the 14in. mark) and see it grow and move to the left. Thus 
one forms the following picture of the flow. Hot spots or plumes form along the 
bottom near the base of the large-scale descent. They travel in the direction of 
the large-scale flow, growing larger in volume as they move. The fluid out of which 
they grow can actually be seen to come up through the base of the plume from 
the region of the warm boundary. They reach the rising region first from the left 
then from the right, alternating in this way. The rising region waves slightly 
from left to right as the plumes approach. 

Relatively cold spots can be seen forming near the top of the rising column. 
These also grow and move with the larger scale flow, so that they are somewhat 
amplified by the time they reach the region of descent (figures ~ ( c c ) ,  ( b ) ) .  However, 
they are quite small compared with the hot plumes. When the tube with cooling 
fluid is used as the top boundary, these cold plumes also amplify greatly and look 
exactly like a mirror image of the rising region (shifted of course to be centred 
around the sinking regions). It is not yet known if there is a phase relationship 
between the hot and cold plumes. However, it is certain that the time-periodic 
behaviour of convection at  high Prandtl number is this periodicity in the 
Eulerian sense; hot or cold plumes are periodically swept past a fixed point in the 
fluid. Using the same fluid in a display tank 30 x 17 x 3.75 em in depth, plumes 
can be seen forming, growing and coalescing just as in the Hele-Shaw cell. OF 
course, there is much more disorder with this additional degree of freedom and, 
for example, centres of rising motion do not remain for as great a length of time 
as in the Hele-Shaw cell. 

When other fluids, such as water, are used, similar behaviour is obtained. 
Small hot spots or plumes are formed occasionally near the bottom and are 
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advected by the larger scale flow, growing taller as they move. However, use of 
the fluid FW005 or freon 113 produces very distinct, sharp thermals. Those 
formed in water are diffuse by comparison. This is presumably because freon 113 
has a much larger thermal expansion coefficient than water and smaller thermal 
diffusivity, leading of course to increased Rayleigh number. No attempt was 
made here to define the lowest Rayleigh number a t  which plumes grow. However, 
for high Prandtl number (medicinal paraffin) Elder reports no growing plumes 
a t  A = 1.10 x lo4 = 2.7 x 102A,. With water, growing plumes are observed 
occasionally a t  R = lo7 = 21Rc. 

When the heating rate is lowered plumes are formed less frequently and they 
move more slowly from the sinking boundary to the rising boundary. The larger 
the heating rate, the larger the number of plumes visible at  any instant. For 
example, at R = lo7, one or two plumes are seen per cell. At R = 108, five or six 
plumes are seen per cell as in figure 7. At very large heating rates plumes coalesce 
with one another, even before they reach the rising centre. Transition to disorder 
does indeed seem to result from an increase in the frequency of oscillations (in the 
Eulerian sense). The flow in the Hele-Shaw cell with steady heating looks statis- 
tically similar to that in frame 12 of figure 6, when viewed almost a t  any time, 
with one exception. Occasionally, a hot spot forms precisely under the centre of 
the cold descending flow. Then it is swept neither to the left nor to the right. If it 
does not move, it grows quite large while remaining right under the descending 
flow, If this occurs thermals formed later move into it, making it a new centre for 
rising motions and disrupting the periodicity of the large-scale flow. Another day 
or two must pass before the flow again looks like frame 12. Otherwise the flow 
continues unchanged for months. A 16 mm colour movie of the Hele-Shaw flow 
is available. 

4. Discussion and summary 
Por mercury, the first transition a t  R, leads to an increase in the dimension- 

less slope dHldR from 1.0 to 1.30 (where H is the product of the Nusselt and 
Rayleigh number). This is much larger than is expected from theory (see table 2). 
There is also hysteresis in the heat flux near R,. There is non-uniqueness on the 
way up, in Rayleigh number, and a slightly larger heat flux on the way down. 
Some of the known causes of hysteresis near R, such as that due to changing mean 
temperature and to  viscosity variation with temperature were considered. The 
dimensionless parameter yl, which is proportioned to the rate of change of mean 
temperature, is defined by (Krishnamurti 1 9 6 8 ~ )  

a 2  aT 
71 = K z a t '  

When y1 is non-zero it has been shown that a finite amplitude instability is 
possible, and the minimum Rayleigh number Rmi, at which flow, which is neces- 
sarily hexagonal, can occur is R,, = Rc(yl) - (8.1) y!, for yl small. I n  the present 
experiments yl was a t  most low3 so the effect could not have been measured. 
Similarly, a dimensionless parameter T ~ ,  which is proportional to change of 
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viscosity with temperature and a third parameter r3 proportional to  the change 
of thermal conductivity with temperature are defined by 

AT av AT aii r 2 = - - ,  q 3 = - -  v aT k aT’ 

The minimum Rayleigh numbers a t  which finite amplitude instability can 
occur can be determined from Busse’s calculations (1967). Using avpT = 3.5 x 
10-3(0C)-1 and ak/aT = 1-5 x 10-3(0C)-1 for mercury, it was found that neither of 
these effects is large enough to explain the observations. There is also the possi- 
bility that higher transitions, which were well separated from that a t  R, for 
high Pr, are excited near R, for low Pr. 

The second increase in slope for mercury occurs a t  R = (2.3 f 0.1) x 103. This 
coincides within experimental error with the Rayleigh number R, a t  which the 
flow becomes time dependent. The observedvalueis R, = (2.4 f 0.1) x 103. This is 
tobe cornparedwith Russe’s result R, - R, = 1.94 x 10-4R,for Pr = 2.5 x 10-2 and 
two free boundaries. The observed periods a t  R 7 R, were of order d2/v  and not 
of order d2/K as with the high Prandtl number fluids. This new result for mercury 
shows that the periods of oscillation are in fact not independent of Prandtl 
number, and is reflected in the discrepancy with Busse’s (1972) equation (5.2), 
which is independent of Prandtl number. Thus the observed periods a t  the 
observed R, would correspond to wavelengths of 200 times the depth, which is 
many times the lateral dimensions of the tank. Busse has expanded the stationary 
two-dimensional fields and the Rayleigh number in powers of A Pr, where A is 
the amplitude. The disturbance fields and their growth rate are expanded in 
powers of the wavenumber b. I n  obtaining Busse’s equation (5. l), the Prandtl- 
number dependence is retained to order Pr2 by means of the last relation of his 
equation (2.7) relating R to A and Pr. However, the solubility conditions and the 
critical amplitude Ai for instability are obtained for Pr = 0. For Pr = 0 and 
A = Ai, the most unstable mode has wavenumber b = 0. However, for A > Ai, 
modes with b += 0 have maximum growth rate. The period i- (Busse’s equation 
( 5 . 2 ) ) ,  which is related inversely to the imaginary part of the growth rate, is 
determined to first order in b. All the results are for two free boundaries, so that 
quantitative agreement should not be expected. It should be pointed out, how- 
ever, that for air, Pr = 0.71, Busse’s equation (5.2) gives excellent agreement 
with observations. Using the observed R, and the observedperiods, the wavelength 
of the oscillation is 1.2 in units of the layer depth, in reasonable agreement with 
the observations of Willis & Deardorff (1970). 

0.1) x lo3, while it 
is seen from figure 3 that many higher frequencies are excited at 

The third change of slope for mercury occurs at  R = (3.3 

R (3-15 f 0.05) x lo3. 

The higher heat-flux transitions for mercury show no hysteresis upon decrease 
of R, but the data lie on curves rather than on straight-line segments. When 
comparing figure 1 with figure 3 of 11, which shows straight-line segments for R 
increased from below and curves of larger heater flux for R decreased from above, 
one possible explanation is that the mercury layer is excited to the higher 
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heat-flux curve by finite amplitude instability on the way up, The decreasing 
slope at  the upper limits of the data (figure 1) appear to be related to this point 
also. The presence of hysteresis can imply a finite amplitude instability, but the 
converse cannot be implied from a lack of hysteresis. 

The following summary may be made of the transition studies for air, 
Pr = 0.71. In  steady-state experiments with aluminum boundaries an increase 
inslopeatR=R, = 1 . 7 ~  t03andanincreaseinslopeatR= R,= (5-6+0.1)x 103 
are observed. The latter coincides with the onset of tirneIdependenc-e. No change 
in slope at 8.2 x 103 is observed but a decrease in slope at R !x 1.0 x lo4 and a 
decrease in slope at  R N 1.7 x 104 are seen. This may be related to finite amplitude 
instability and excitation of higher heat-flux curves. In  quasi-steady experiments 
with aluminum boundaries (Willis & Deardorff 1967b) an increase in slope at 
R = R, and an increase in slope a t  8.2 x lo3 are seen. The existing data on the 
onset of time dependence for Pr = 0.71 are in much better agreement than are 
the data on heat-flux slopes. In  steady-state experiments with aluminum 
boundaries, time-dependent flow starts at R = R, = (5-6 5 0.1) x lo3. Quasi- 
steady experiments give R, = 6.3 x lo3 & 500 (Willis & Deardorff 1965), 
R, = 5.6 x 103 (Willis & Deardorff 1967a) and R, = 5.8 x lo3 (Willis & Deardorff 
1970). In  the latter case, flow visualization through an upper glass boundary by 
means of a ' smoke ' of oil droplets showed transverse oscillation of rolls in addi- 
tion to occasional mean flow. The experiments lasted only 15min after intro- 
duction of smoke. 

Although k,,,,, 3 k,,, the relative magnitudes of K, which are important for 
time-dependent processes, are reversed: K = 5.0 x cm2/s for glass and 
K = 0+26cm2/s for air. For example, if a boundary has relatively low thermal 
diffusivity, hot rising fluid will warm up the boundary locally above the tem- 
perature of the rising region. The fluid could nevertheless transfer the heat sup- 
plied to it from below by having the rising regions change from place to place, 
thus not making one location too warm, but spreading the heat. The nature of 
the boundary can demand or determine time dependence of the flow. Yet this 
appears not to be the case, since the time dependence sets in for glass and for 
aluminum boundaries at  nearly equal R, and with comparable periods. 

For R just above R,, it has been shown that rolls tend to meet most of the 
lateral boundaries at  right angles. When rolls are curved RII is found to be 
lowered. This is significant since curved rolls (due to either initial or boundary 
conditions) are the rule rather than the exception in most experiments. 

Finally the nature of the time dependence for high Prandtl number has been 
described. By choosing a fluid of relatively large CI and small K ,  growing plumes 
become very distinct and can be seen moving with the larger scale flow. This is 
especially clear in a Hele-Shaw-cell. The experiments to date are summarized in 
the regime diagram of figure 4. 
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FIGURE 5. The preferred orientation of rolls for various side-wall geometries. Pr = 0.86 x 10s. 
(a )  Rolls parallel to the short side of a rectangular container, R = l . lRc .  ( b )  Rolls in t,he 
annular region between two circular cylinders, R = l . lRc .  ( c )  Rolls in a circular region, 
aspect ratio 22, R = 1-2Rc. (d)  As ( c )  but R = 8Rc. ( e )  As ( c )  but R = 10Rc. 
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Plate 3 
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